A Bayesian Framework for Quantifying Uncertainty in Stochastic Simulation
نویسندگان
چکیده
When we use simulation to estimate the performance of a stochastic system, the simulation often contains input models that were estimated from real-world data; therefore, there is both simulation and input uncertainty in the performance estimates. In this paper, we provide a method to measure the overall uncertainty while simultaneously reducing the influence of simulation estimation error due to output variability. To reach this goal, a Bayesian framework is introduced. We use a Bayesian posterior for the input-model parameters, conditional on the real-world data, to quantify the input-parameter uncertainty; and we propagate this uncertainty to the output mean using a Gaussian process posterior distribution for the simulation response as a function of the input-model parameters, conditional on a set of simulation experiments. We summarize overall uncertainty via a credible interval for the mean. Our framework is fully Bayesian, makes more effective use of the simulation budget than other Bayesian approaches in the stochastic simulation literature, and is supported with both theoretical analysis and an empirical study. We also make clear how to interpret our credible interval and why it is distinctly different from the confidence intervals for input uncertainty obtained in other papers.
منابع مشابه
Joint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملCapability of the Stochastic Seismic Inversion in Detecting the Thin Beds: a Case Study at One of the Persian Gulf Oilfields
The aim of seismic inversion is mapping all of the subsurface structures from seismic data. Due to the band-limited nature of the seismic data, it is difficult to find a unique solution for seismic inversion. Deterministic methods of seismic inversion are based on try and error techniques and provide a smooth map of elastic properties, while stochastic methods produce high-resolution maps of el...
متن کاملA new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework
Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...
متن کاملAccounting for Multivariate Input Uncertainty in Large-Scale Stochastic Simulations
Two important components of a large-scale stochastic simulation are the generation of random variates from multivariate input models and the analysis of simulation output data to estimate mean performance measures and confidence intervals. The common practice is to obtain the multivariate input models applying statistically valid fitting algorithms to historical data sets of finite length and c...
متن کاملFundamentals and Recent Developments in Approximate Bayesian Computation
Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are obtainable. Approximate Bayesian computation (ABC) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Operations Research
دوره 62 شماره
صفحات -
تاریخ انتشار 2014